Sorghum (Sorghum Bicolor) Entrepreneurship Products:
Chemical Quality Analysis

Ami Silvia Rusydah, Endang Noerhartati*, Tri Rahayuningsih
Wijaya Kusuma University Surabaya
*Correspondent Author
endang_noer@uwks.ac.id

ABSTRACT

Purpose: The study aims to find to determine the effect of the proportion of sorghum flour: glutinous rice flour and types of sugar on the quality of sorghum dodol products

Design/methodology/approach: This study used a factorial randomized block design (RAK) with factor (T) the proportion of sorghum flour: glutinous rice flour (T1 = 30:70 and T2 = 40:60 and factor (G) the type of brown sugar (G1 = palm sugar and G2 = palm sugar. While each treatment was repeated three times. Data on yield value, water content, ash content, protein content, fat content, carbohydrate content, and total sugar were analyzed using analysis of variance (ANOVA) and if there was a difference The results will be followed by Duncan's test with a confidence level of 95%.

Findings: The results will be followed by Duncan's test with a confidence level of 95%. Research results show that product entrepreneurship dodol sorghum treatment T1G1 (proportion of sorghum flour: glutinous rice flour 30:70 and palm sugar) became the selected treatment with an expected value of 8.75. This treatment had a yield of 88.83%, water content 26.59%, ash content 0.52%, protein content 1.47%, fat content 0.52%, carbohydrate content 70.90% and total sugar 67.53%.

Research limitations/implications: This research is specifically for the development of sorghum dodol entrepreneurial products with chemical quality studies

Practical implications: The development of sorghum-based entrepreneurship products must continue to be promoted in order to continue to support food security

Originality/value: This paper is original

Paper type: Research paper

Keywords: Dodol Sorghum, Palm Sugar, Product Entrepreneurship, Siwalan Brown Sugar, Sorghum Flour

Received : September 15th
Revised : September 17th
Published : September 30th

I. INTRODUCTION

Dodol is a fairly popular traditional food that has been known since ancient times and is processed in a traditional way. Dodol is a semi-wet processed product that is dense and chewy, a similar product made traditionally called jenang with a softer and oily texture. The development of sorghum in Indonesia is currently felt to be very necessary both as an ingredient for industry or as an alternative food ingredient, the products of which are used as food, beverages, animal feed, and other industrial interests. One of the products of sorghum is sorghum flour, and one form of diversification of processed food dodol is to substitute glutinous rice flour with sorghum flour. Because one of the advantages of sorghum is that it is gluten-free, contains anti-oxidants, has a low glycemic index, and is high in fiber (Savitri, Masithah, and Tjahjaningsih 2022; Sindia, Siregar, and Ihsan 2022)

Sorghum is a plant from the cereal family, still in the same family as rice, corn, and wheat. The nutritional value of sorghum is not inferior to rice as a staple food. Even sorghum contains protein (8-12%) equivalent to wheat or higher than rice (6-10%), and its fat content (2-6%) is higher than rice (0.5-1.5%)
Making dodol also requires sweeteners as a source of taste that attracts consumers. Several types of natural sweeteners that can be used for making dodol are brown sugar. Brown sugar is one of the food ingredients made from palm sap including siwalan and palm sugar. Brown sugar has advantages, including a brownish color and a distinctive aroma, and has a lower glycemic index value compared to granulated sugar, which is 35 so it is good for consumption by diabetics or people who want to maintain health (Noerhartati et al. 2019; Sihombing et al. 2022)

The purpose of the study was to determine the effect of the proportion of sorghum flour: glutinous rice flour and types of brown sugar on the quality of dodol and to determine the best treatment combination for the proportion of sorghum flour: glutinous rice flour and types of brown sugar on the quality of dodol.

II. METHODOLOGY

The materials used in this study were red sorghum flour (Sorghum bicolor), glutinous rice flour, brown sugar, coconut milk, granulated sugar, salt, and pandan leaves. This study used a Randomized Block Design (RAK) method which consisted of 2 (two) factors with 3 (three) replications. Factor I: the proportion of sorghum flour: glutinous rice flour (T) consists of two levels, namely T1 = 30% : 70% and T2 = 40% : 60%. While factor II is the type of sugar (G), namely brown sugar (G1) and granulated sugar (G2). The process of making dodol begins by mixing water, brown sugar, granulated sugar, thick coconut milk, coconut milk, salt, and pandan leaves, heat, and after 10 minutes add sorghum flour and glutinous rice flour which has been mixed with water slowly. The dodol cooking process is carried out for ± 1 hour by heating at a high temperature of 90ºC. After that lunkhead is cooled and cut into small blocks before serving. Observations included yield, water content, ash content, fat content, protein content, and carbohydrate content, and total sugar (Horwitz 2010).

Processing with analysis of variance if there is a difference, then the Duncan test is carried out with a 5% confidence level, followed by the selection of alternatives aimed at determining the best alternative process. The concept of the expected value decision is to choose a decision that has the maximum payoff (profit or utility). Furthermore, the value of the weight of the sorghum dodol parameter was determined, and the determination of the selected treatment using the expected value method (Li and Zhang 2022; Smulko, Granqvist, and Kish 2022).

III. RESULTS AND DISCUSSION

The test results of yield, water content, ash content, fat content, carbohydrate content, protein content, and total sugar content are presented in Figure 1-6 as follows:

The results of the yield test are presented in Figure 1, which shows that the yield of sorghum dodol is between 87.78 - 89.49%. The results of the analysis of variance showed that there was no interaction between treatments, besides the proportion of sorghum flour: glutinous rice flour (T) and the type of sugar (G) had no significant effect on the yield of sorghum dodol. This is based on the calculated F value of the proportion factor of sorghum flour: glutinous rice flour (T), namely F count (1.428) < F table (5.99) and F count from the type of sugar (G) factor, namely F count (0.389) < F table (5.99).
The results of the water content test are presented in Figure 2, which shows that the water content of sorghum dodol is between 26.59-33.87%. The results of the analysis of variance showed that there was no interaction between treatments, besides the proportion of sorghum flour: glutinous rice flour (T) and the type of sugar (G) had a significant effect on the water content of sorghum dodol. This is based on the calculated F value of the proportion factor of sorghum flour: glutinous rice flour (T), namely F count (86,135) > F table (5.99) and F count from the type of sugar (G) factor, namely F count (11,002) > F table (5.99).

The results of the fat content test are presented in Figure 4, which shows that the fat content of sorghum dodol is between 0.39-0.52%. The results of the analysis of variance showed that there was no interaction between treatments, besides the proportion of sorghum flour: glutinous rice flour (T) and the type of sugar (G) did not significantly affect the fat content of sorghum dodol. This is based on the calculated F value of the proportion factor of sorghum flour: glutinous rice flour (T), namely F count (0.003) < F table (5.99) and F count from the type of sugar factor (G) namely F count (0.025) < F table (5.99). The results of the carbohydrate content test are presented in Figure 6, which shows that the carbohydrate content of sorghum dodol is between 63.97-70.90%. The results of the analysis of variance showed that there was no interaction between treatments, besides the proportion of sorghum flour: glutinous rice flour (T) and the type of sugar (G) had a significant effect on the carbohydrate content of sorghum dodol. This is based on the calculated F value of the proportion factor of sorghum flour: glutinous rice flour (T), namely F count (78.439) > F table (5.99) and F count from the type of sugar (G) factor, namely F count (9,901) > F table (5.99).

The results of the protein content test are presented in Figure 5, which shows that the protein content of sorghum dodol is between 1.19-1.47%. The results of the analysis of variance showed that there was no interaction between treatments, besides that the proportion of sorghum flour: glutinous rice flour (T) and the type of sugar (G) did not significantly affect the protein content of sorghum dodol.
Sorghum (Sorghum Bicolor) Entrepreneurship Products: Chemical Quality Analysis

Ami Silvia Rusydhah, Endang Noerhartati*, Tri Rahayuningsih

The weight value of sorghum dodol, from the highest importance value, is carbohydrate content of 25%, protein content of 20%, fat content of 19%, the total sugar content of 14%, water content of 12%, and ash content of 10%. And based on the calculation of the expected value, the highest expected score was found in the T1G1 treatment (proportion of sorghum flour: glutinous rice flour 30%: 70% and palm sugar) with an expected value score of 6.72.

IV. CONCLUSION

Sorghum dodol is one of the sorghum-based entrepreneurship products. T1G1 treatment (proportion of sorghum flour: glutinous rice flour 30%: 70% and palm sugar with an expected value of 6.72. This treatment had a yield of 88.83%, water content of 26.59%, ash content of 0.52%, protein content is 1.47%, fat content is 0.52%, carbohydrate content is 70.90% and total sugar is 67.53%.

REFERENCES

