

# IJTI

Attribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, even cor Volume 4 Number 2 March 2021

# Study of Behavioral of Vertical Irregular Building Structure by Applying Column Variation Due to Earthquake using Dynamic Analysis

Syafwandi<sup>1</sup>, Pawening Esti Pramundi<sup>1</sup>, Agyanata Tua Munthe<sup>1</sup>, Agung Sumarno<sup>2</sup> Departement of Civil Engineering, Universitas Mercu Buana, Indonesia<sup>1</sup> National Research and Innovation Agency<sup>2</sup> h.syafwandi13@gmail.com, paweningesti@gmail.com, agyanata.umb@gmail.com,

agung\_sumarno@mercubuana.ac.id

#### Abstract

The development of high-rise buildings in Indonesia is now increasingly diverse. The need for increasingly narrow land functions affects the shape of the building which tends to be irregular. Irregularity in the building requires structural planners to build buildings that are safe against earthquakes but also do not forget the aspect of user comfort. In this study, an analysis of the dynamics of earthquakes was carried out in buildings that have vertical geometric irregularities by varying the dimensions and reinforcement of the columns. The behavior of the building structure produces structural responses in the form of base shear, fundamental period, displacement and story drift. Analysis of earthquake using dynamic analysis of response spectrum based on SNI 1726 2019 with the help of ETABS software version 9.7.4. The results of this research indicate that the variation of column dimensions and column reinforcement in buildings with irregular vertical geometry reduces the stiffness of the building thereby reducing the forces in the structure, increasing the fundamental period, reducing the base shear force, increasing the displacement and the story drift.

#### **Keywords:**

Vertical Geometric Irregularity, Dynamic Analysis Response Spectrum, Base Shear, Fundamental Period, Displacement, Story Drift.

#### **1. Introduction**

Indonesia is a country that is flanked by two oceans and is located in a tectonic plate area. Indonesia's geographical location is at the confluence of four major tectonic plates, namely the Eurasian, Indo-Australian, Pacific and Philippine plates, which is often referred to as the ring of fire or earthquake-prone area. Earthquakes that occur in Indonesia often take lives. However, it is certain that the cause of the death toll was not directly caused by the earthquake, but caused by the damage to the building which caused the collapse of the building and resulted in casualties. With these conditions, the challenges in the construction world in Indonesia are very large, especially in designing earthquake-resistant high-rise buildings.

The development of high-rise buildings in Indonesia is now increasingly diverse. The need for increasingly narrow land functions, affects the shape of the building which tends to be irregular. Irregularity in the building requires structural planners to build buildings that are safe against earthquakes but also do not forget the aspect of user comfort. One type of irregularity in a building is vertical geometric irregularity, where according to SNI 03-1726:2019, vertical geometric irregularity is a building if the horizontal dimension of the seismic force bearing system at any level is more than 130% of the horizontal dimension of the adjacent seismic force resisting system.

Buildings with regular, simple, and symmetrical shapes will behave better against earthquakes than buildings with irregular shapes (Paulay & Priestley, 1992). The irregular shape of the building will be more unstable than the regular building. These irregularities can affect the stiffness of the building to withstand earthquake loads. One of the indicators to see earthquake response is displacement. The displacement resulting from irregular buildings is greater, so the building has a lower strength against earthquake loads (Purba, 2014).

Regardless of the complexity of the earthquake problems that occur, the main task of experts and practitioners, especially those engaged in civil engineering, is to create a new order regarding the design of earthquake-resistant buildings that are even better. Another thing that must be considered in planning earthquake-resistant buildings is to be guided by the latest regulations or standards that apply in Indonesia, SNI 1726:2019 (2019) concerning *Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan nongedung*. To review the magnitude of the earthquake load that occurs in the building structure, it can be seen from the factors that influence it. There are several factors, including the mass and stiffness of the structure, soil conditions and the seismic area where the building structure is erected. The mass of the building structure is a



You are free to: Share



Attribution 4.0 International (CC BY 4.0) copy and redistribute the material remix, transform, and build upon the material for any purp m or format, Adapt -

Volume 4 Number 2 March 2021

very important factor, because the earthquake load is an inertial force that acts on the center of mass, the amount of which is very dependent on the mass of the structure (Indarto et al., 2013).

In this research, we will review the behavior of buildings against earthquakes through changes in mass. One of the ways to reduce the mass of the building is by reducing the dimensions and reinforcement of the column. The analysis method used is the dynamic analysis of the response spectrum. The building being analyzed is the Social Security Tower (SS Tower) which has vertical geometric irregularities in 3 (three) types of columns. The building has a building area of 50,000 m<sup>2</sup>, a height of 125.2 meters with 30 stories and 3 basements.

# 2. Methodology

# 2.1. Research Method

The research method used in this analysis is a quantitative method, which begins with studying survey data and some literature reviews and then proceed with structural modeling using the ETABS V.9.7.4 software. The calculation of earthquake analysis uses the SNI 1726:2019 concerning Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan nongedung.

| 2.2. | General | Data |
|------|---------|------|
|      |         |      |

|        | Project name             | : Social Security (SS) Tower                                      |
|--------|--------------------------|-------------------------------------------------------------------|
|        | Project location         | : Jalan Rasuna Šaid, Kav. 112 Blok B, Setia Budi, Jakarta Selatan |
|        | Latitude                 | : -6.20697°                                                       |
|        | Longitude                | : 106.82862°                                                      |
| 2.3. ' | Technical Data           |                                                                   |
|        | Object of research       | : Social Security (SS) Tower                                      |
|        | Material properties      | : Reinforced concrete                                             |
|        | Building function        | : Office                                                          |
|        | Structure system         | : Dual System                                                     |
|        | Soil type                | : Medium soil                                                     |
|        | Building area            | $: 50.000 \text{ m}^2$                                            |
|        | Structure height         | : 125,2 m                                                         |
|        | Number of stories        | : 30 stories and 3 basement                                       |
|        | Drawing data             | : As planned drawing                                              |
|        | Concrete strength        | : 35 MPa – 45 MPa (Column daand Core Wall)                        |
|        |                          | 30 MPa – 35 MPa (Beam and Slab)                                   |
|        | Reinforecement yield str | ength: 400 MPa (Longitudinal)                                     |
|        | -                        | 240 MPa (Transversal)                                             |
|        | Concrete Density         | $: 24 \text{ kN/m}^3$                                             |

**Concrete Density** 

# 2.4. Gambar Desain Struktur

The following is a picture of the structure design of Social Security (SS) Tower.



(Source: Secondary data, 2022)





Attribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose Volume 4 Number 2 March 2021

# 2.5. Flowchart

The stages of analysis in the calculation of this study are as described in the following figure:



# 3. Analysis and Result

## **3.1. Spectra Response Design**

Earthquake parameters are determined based on SNI 1726 2019 concerning *Tata cara perencanaan* ketahanan gempa untuk struktur bangunan gedung dan nongedung with the following details:

- 1. The category of building structure is seen from Table 1 of SNI 1726-2019. The Social Security (SS) Tower building which is included in an office building is categorized as a risk II building.
- 2. The earthquake priority factor (Ie) is seen from Table 2 of SNI 1726-2019. The risk category II building has an earthquake priority factor (Ie) of 1.00.
- 3. Based on Indonesia's spectral response design data released by Pusat Penelitian dan Pengembangan Permukiman, Kementrian Pekerjaan Umum, the response spectra parameters are obtained as follows:

| Table 1. Parameter Response Spectra              |       |  |  |
|--------------------------------------------------|-------|--|--|
| Variable                                         | Value |  |  |
| PGA (g)                                          | 0,361 |  |  |
| $\mathbf{S}_{\mathbf{S}}\left(\mathbf{g}\right)$ | 0,686 |  |  |
| $\mathbf{S}_{1}\left(\mathbf{g}\right)$          | 0,300 |  |  |
| $C_{RS}$                                         | 0,995 |  |  |
| $C_{R1}$                                         | 0,940 |  |  |
| $F_{PGA}(g)$                                     | 1,139 |  |  |
| $F_A$                                            | 1,251 |  |  |
| $F_V$                                            | 1,799 |  |  |
| PSA (g)                                          | 0,411 |  |  |
| $S_{MS}(g)$                                      | 0,858 |  |  |
| $S_{M1}(g)$                                      | 0,540 |  |  |
| $S_{DS}(g)$                                      | 0,572 |  |  |
| $S_{D1}(g)$                                      | 0,360 |  |  |
| $T_0$ (second)                                   | 0,126 |  |  |
| $T_{s}$ (second)                                 | 0,630 |  |  |

(Source: Pusat Penelitian dan Pengembangan Pemukiman – Kementerian Pekerjaan Umum)



Available Online @ http://jumal.narotama.ac.id/index.php/ijti ISSN : 2597-4769 (ONIJNE) ISSN : 2597-4734 (CETAK)



Attribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, even commercially **Volume 4 Number 2 March 2021** 

| T (second)           | SA (g) |  |
|----------------------|--------|--|
| 0                    | 0,229  |  |
| $T_0$                | 0,572  |  |
| $T_{S}$              | 0,572  |  |
| $T_{S} + 0$          | 0,494  |  |
| $T_{S} + 0.5$        | 0.293  |  |
| $T_{S} + 1$          | 0.208  |  |
| T <sub>S</sub> + 1,5 | 0.162  |  |
| $T_{S} + 2$          | 0.132  |  |
| $T_{S} + 2,5$        | 0.112  |  |
| $T_S + 3$            | 0.097  |  |

 $T_{s} + 3,1$ 

 $T_{s} + 3,2$ 

4

Table 2. Connectivity Fundamental Period, T (second) and Spectral Response Acceleration, SA (g)

(Source: Pusat Penelitian dan Pengembangan Pemukiman - Kementerian Pekerjaan Umum)

0.094

0.092

0.090

The connectivity between the natural vibration period (T) and SA (g) can be seen in the following spectrum response graph:



(Source: Pusat Penelitian dan Pengembangan Pemukiman – Kementerian Pekerjaan Umum)

- 1. Seismic design categories are obtained from Table 8 and Table 9 of SNI 1726-2019. Based on the data in point 3, buildings with  $S_{DS} \ge 0.50$  dan  $S_{D1} \ge 0.20$  are categorized as type D seismic design categories.
- 2. Site classification is obtained from Table 5 of SNI 1726-2019. Buildings with N values between 15 and 50 are classified as type D site classification.
- The response modification coefficient (R) is obtained from Table 12 SNI 1726-2019. Buildings with special moment-bearing reinforced concrete frame structures have a response modification coefficient value (R) of 8.

#### 3.2. Column Capasity

In this research, the column capacity was carried out using pcaColumn software. The columns that are reviewed or varied are the types of columns K5, K7, K8, K22, K23, and K25. Based on the column interaction diagram, the condition of the column from the basement floor to the roof floor is still able to accept all variations of the building because the results of the analysis of all columns are still within the strong line of the plan. The ability of the column to receive axial loads and moments in the building to be analyzed, explains that all column dimensions are feasible to be analyzed based on the parameters of base shear, displacement, and story drift. The results of the analysis prove that the variation of column dimensions given in this study does not result in collapse of the concrete, failure will begin in the steel reinforcement first due to tensile forces, so that the concrete in the column is still strong.

#### 3.3. Base Shear

Based on the results of the ETABS program analysis, the base shear values obtained with various variations of column dimension reduction. The response of the base shear structure is taken from the results of the ETABS program analysis seen from the base reaction.



Available Online @ http://jumal.narotama.ac.id/index.php/ijti ISSN : 2597-4769 (ONLINE) ISSN : 2597-4734 (CETAK)



Attribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, even commercially **Volume 4 Number 2 March 2021** 

| Table 3. Base Shear Value           |                                                                                                                                                                  |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Base Shear (kN)<br>Dynamic Analysis |                                                                                                                                                                  | N) Structure<br>atic Weight                                                                                                                                                                                                                            | Fundamental<br>Period                                                                                                                                                                                                      |  |  |
| ection Y Direct                     | ion Analysis                                                                                                                                                     | (kN)                                                                                                                                                                                                                                                   | (s)                                                                                                                                                                                                                        |  |  |
| 2,62 5971,2                         | 3 3334,280                                                                                                                                                       | 540050,1                                                                                                                                                                                                                                               | 7,288607                                                                                                                                                                                                                   |  |  |
| 7,31 5893,2                         | 9 3301,133                                                                                                                                                       | 535275,6                                                                                                                                                                                                                                               | 7,296709                                                                                                                                                                                                                   |  |  |
| 9,05 5812,2                         | 8 3266,976                                                                                                                                                       | 530716,4                                                                                                                                                                                                                                               | 7,310197                                                                                                                                                                                                                   |  |  |
| 4,3 5732,1                          | 1 3236,099                                                                                                                                                       | 526820,4                                                                                                                                                                                                                                               | 7,325771                                                                                                                                                                                                                   |  |  |
|                                     | Provide stress      Base Shear (kN)      bynamic Analysis      ection    Y Direct      2,62    5971,2      7,31    5893,2      9,05    5812,2      4,3    5732,1 | Base Shear (kN)    Base Shear (kR)      bynamic Analysis    Equivalent State      ection    Y Direction    Analysis      2,62    5971,23    3334,280      7,31    5893,29    3301,133      9,05    5812,28    3266,976      4,3    5732,11    3236,099 | Base Shear (kN)Base Shear (kN)StructurePanic AnalysisEquivalent StaticWeightPanic AnalysisEquivalent Static(kN)2,625971,233334,280540050,17,315893,293301,133535275,69,055812,283266,976530716,44,35732,113236,099526820,4 |  |  |

(Source: ETABS V9.7.4 software, 2022)

Based on the results that have been obtained, the value of the dynamic base shear of the entire modeling is 100% greater than the calculation of the static earthquake base shear. Therefore, the base shear obtained does not need to be re-evaluated. If we compare the results of the base shear analysis from the X direction and from the Y direction, it will be seen that the change in value is not too significant. However, the base shear value is constantly decreasing accompanied by a decrease in the column dimensions which are treated in variation 1, variation 2, and variation 3. The largest base shear value on the X and Y axes is found in the existing building model. While the lowest base shear value in terms of both the X and Y axes is found in the variation 3 building model.

# 3.4. Displacement

Displacement that occurs in every condition of the variation of the building is viewed from both directions, namely the X direction and the Y direction. The displacement value is taken from one point that has a continuous column from the basement floor to the roof story, and the point that has the largest displacement value as a sample to see the treatment of the building. The following is the displacement value of each modeling variation for the X direction and the Y direction.

| Table 4. Displacement of X Direction |          |              |                |             |
|--------------------------------------|----------|--------------|----------------|-------------|
|                                      |          | Displacement | of X Direction |             |
| Story                                |          | (n           | nm)            |             |
|                                      | Existing | Variation 1  | Variation 2    | Variation 3 |
| Roof Story                           | 195,424  | 196,190      | 197,270        | 197,935     |
| ME Story                             | 192,665  | 193,424      | 194,633        | 195,147     |
| Story 28                             | 188,198  | 188,872      | 189,971        | 190,386     |
| Story 27                             | 183,177  | 183,764      | 184,755        | 185,075     |
| Story 26                             | 177,772  | 178,271      | 179,149        | 179,372     |
| Story 25                             | 173,086  | 173,520      | 174,312        | 174,460     |
| Story 24                             | 168,051  | 168,416      | 169,116        | 169,187     |
| Story 23                             | 162,722  | 163,026      | 163,645        | 163,653     |
| Story 22                             | 157,075  | 157,320      | 157,860        | 157,907     |
| Story 21                             | 151,098  | 151,289      | 151,753        | 152,646     |
| Story 20                             | 144,791  | 144,931      | 145,323        | 146,166     |
| Story 19                             | 138,182  | 138,276      | 138,602        | 139,403     |
| Story 18                             | 131,266  | 131,318      | 131,581        | 132,344     |
| Story 17                             | 124,110  | 124,132      | 124,345        | 125,083     |
| Story 16                             | 116,679  | 116,689      | 116,832        | 117,547     |
| Story 15                             | 109,401  | 109,570      | 110,495        | 110,597     |
| Story 14                             | 101,494  | 101,544      | 101,630        | 102,222     |
| Story 13                             | 93,362   | 93,597       | 93,751         | 94,040      |
| Story 12                             | 85,056   | 85,982       | 86,012         | 86,706      |
| Story 11                             | 76,589   | 76,713       | 76,925         | 77,233      |
| Story 10                             | 67,797   | 67,919       | 68,915         | 69,638      |
| Story 9                              | 59,101   | 59,329       | 59,516         | 60,062      |
| Story 8                              | 50,133   | 50,672       | 50,858         | 51,436      |



Available Online @ http://jumal.narotama.ac.id/index.php/ijti ISSN : 2597-4769 (ONLINE) ISSN : 2597-4734 (CETAK)

Attribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, even commercially Volume 4 Number 2 March 2021

|            | Volume 4 Number 2 March 2021 |        |        |        |  |  |
|------------|------------------------------|--------|--------|--------|--|--|
| Story 7    | 40,107                       | 40,360 | 40,548 | 41,172 |  |  |
| Story 6    | 30,560                       | 30,624 | 30,813 | 31,378 |  |  |
| Story 5    | 23,160                       | 23,340 | 24,340 | 24,544 |  |  |
| Story 4    | 17,431                       | 17,626 | 17,834 | 18,368 |  |  |
| Story 3    | 12,032                       | 12,049 | 12,074 | 13,046 |  |  |
| Story 2    | 7,034                        | 7,068  | 7,109  | 7,123  |  |  |
| Story 1    | 1,362                        | 1,433  | 1,506  | 1,574  |  |  |
| Basement 1 | 0,209                        | 0,217  | 0,226  | 0,234  |  |  |
| Basement 2 | 0,065                        | 0,068  | 0,070  | 0,072  |  |  |
| Basement 3 | 0,000                        | 0,000  | 0,000  | 0,000  |  |  |

(Source: ETABS V 9.7.4, 2022)



Figure 4. The Graph of X-Direction Displacement All Variations (Source: Author's analysis, 2022)

|            | Displacement of Y Direction |             |             |             |  |
|------------|-----------------------------|-------------|-------------|-------------|--|
| Story      | (mm)                        |             |             |             |  |
|            | Existing                    | Variation 1 | Variation 2 | Variation 3 |  |
| Roof Story | 168,149                     | 168,508     | 168,478     | 168,834     |  |
| ME Story   | 160,515                     | 160,910     | 160,929     | 161,312     |  |
| Story 28   | 153,054                     | 153,493     | 153,566     | 153,981     |  |
| Story 27   | 145,474                     | 145,948     | 146,069     | 146,512     |  |
| Story 26   | 137,923                     | 138,430     | 138,598     | 139,065     |  |
| Story 25   | 131,623                     | 132,157     | 132,360     | 132,847     |  |
| Story 24   | 125,318                     | 125,875     | 126,113     | 126,617     |  |
| Story 23   | 119,048                     | 119,623     | 119,890     | 120,405     |  |
| Story 22   | 112,799                     | 113,387     | 113,679     | 114,204     |  |
| Story 21   | 106,583                     | 107,180     | 107,493     | 108,023     |  |
| Story 20   | 100,406                     | 101,007     | 101,337     | 101,868     |  |
| Story 19   | 94,277                      | 94,876      | 95,219      | 95,746      |  |
| Story 18   | 88,187                      | 88,781      | 89,132      | 89,653      |  |
| Story 17   | 82,165                      | 82,747      | 83,100      | 83,610      |  |
| Story 16   | 76,189                      | 76,755      | 77,107      | 77,602      |  |
| Story 15   | 70,557                      | 71,104      | 71,451      | 71,928      |  |
| Story 14   | 64,695                      | 65,217      | 65,555      | 66,009      |  |
| Story 13   | 58,893                      | 59,388      | 59,712      | 60,141      |  |
| Story 12   | 53,181                      | 53,642      | 53,949      | 54,349      |  |

Table 5. Displacement of Y Direction



Available Online @ http://jumal.narotama.ac.id/index.php/ijti ISSN : 2597-4769 (ONLINE) ISSN : 2597-4734 (CETAK)

Attribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, even commercially Winner A Number 2 Month 2021

| Volume 4 Number 2 March 2021 |        |        |        |        |  |
|------------------------------|--------|--------|--------|--------|--|
| Story 11                     | 47,556 | 47,981 | 48,266 | 48,634 |  |
| Story 10                     | 42,054 | 42,440 | 42,703 | 43,038 |  |
| Story 9                      | 36,766 | 37,112 | 37,349 | 37,647 |  |
| Story 8                      | 31,657 | 31,958 | 32,165 | 32,424 |  |
| Story 7                      | 25,687 | 25,939 | 26,114 | 26,332 |  |
| Story 6                      | 20,115 | 20,317 | 20,460 | 20,634 |  |
| Story 5                      | 16,030 | 16,192 | 16,305 | 16,444 |  |
| Story 4                      | 12,637 | 12,761 | 12,847 | 12,952 |  |
| Story 3                      | 9,509  | 9,597  | 9,656  | 9,731  |  |
| Story 2                      | 6,652  | 6,713  | 6,755  | 6,808  |  |
| Story 1                      | 3,401  | 3,439  | 3,468  | 3,501  |  |
| Basement 1                   | 1,258  | 1,272  | 1,282  | 1,293  |  |
| Basement 2                   | 0,314  | 0,319  | 0,322  | 0,326  |  |
| Basement 3                   | 0,000  | 0,000  | 0,000  | 0,000  |  |

(Source: ETABS V 9.7.4, 2022)



Figure 5. The Graph of Y-Direction Displacement All Variations (Source: Author's analysis, 2022)

In accordance with SNI 1726 2019, the deviation value for all variations of the X-direction and Y-direction modeling obtained must not exceed the allowable deviation value under review, where the magnitude of the displacement under review should not exceed 0.020 times the building height. This is done to avoid the danger of excessive deviation so that it can cause the building to collapse. Based on the results of the deviation values for all modeling variations in the X and Y directions, they are still in the safe category. The following describes the displacement value for the displacement allowable.

|   | Table 6. Displacement Allowable |             |             |                           |        |  |
|---|---------------------------------|-------------|-------------|---------------------------|--------|--|
|   | Variation                       | Displacen   | nent (mm)   | Displacement<br>Allowable | Result |  |
|   |                                 | X-Direction | Y-Direction | (mm)                      |        |  |
|   | Existing                        | 195,424     | 168,149     | 2748                      | Safe   |  |
|   | Variation 1                     | 196,190     | 168,508     | 2748                      | Safe   |  |
|   | Variation 2                     | 197,270     | 168,478     | 2748                      | Safe   |  |
| _ | Variation 3                     | 197,935     | 168,834     | 2748                      | Safe   |  |

(Source: Author's analysis, 2022)





nmercially

Attribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, even cor Volume 4 Number 2 March 2021







(Source: Author's analysis, 2022)

#### 3.5. Story Drift

Story drift is the deviation between floors measured from the base of the story below. The value of the story drift is taken from the displacement value between stories that has been obtained in the previous subchapter. The following is the story drift value that occurs in each condition of the variation of the X-direction and Y-direction buildings.

| Table 7. Story Drift of X Direction |                            |             |             |             |  |  |
|-------------------------------------|----------------------------|-------------|-------------|-------------|--|--|
|                                     | Story Drift of X Direction |             |             |             |  |  |
| Story                               |                            | (mi         | m)          |             |  |  |
|                                     | Existing                   | Variation 1 | Variation 2 | Variation 3 |  |  |
| Roof Story                          | 2,759                      | 2,767       | 2,637       | 2,788       |  |  |
| ME Story                            | 4,467                      | 4,552       | 4,661       | 4,761       |  |  |
| Story 28                            | 5,021                      | 5,107       | 5,216       | 5,310       |  |  |
| Story 27                            | 5,405                      | 5,493       | 5,606       | 5,703       |  |  |
| Story 26                            | 4,686                      | 4,751       | 4,838       | 4,912       |  |  |
| Story 25                            | 5,035                      | 5,105       | 5,196       | 5,273       |  |  |
| Story 24                            | 5,329                      | 5,390       | 5,471       | 5,533       |  |  |
| Story 23                            | 5,647                      | 5,706       | 5,786       | 5,746       |  |  |
| Story 22                            | 5,977                      | 6,032       | 6,107       | 5,262       |  |  |
| Story 21                            | 6,307                      | 6,358       | 6,430       | 6,480       |  |  |
| Story 20                            | 6,609                      | 6,655       | 6,721       | 6,763       |  |  |
| Story 19                            | 6,916                      | 6,958       | 7,022       | 7,059       |  |  |
| Story 18                            | 7,155                      | 7,186       | 7,236       | 7,261       |  |  |
| Story 17                            | 7,432                      | 7,443       | 7,513       | 7,537       |  |  |



Available Online @ http://jumal.narotama.ac.id/index.php/ijti

ISSN : 2597-4769 (ONLINE) ISSN : 2597-4734 (CETAK)

 
 Attribution 4.0 International (CC BY 4.0)

 You are free to: Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, even commercially

 Volume 4 Number 2 March 2021
Story 16 7,278 7,119 6,950 6,337 Story 15 7,907 8,027 8,865 8,375 Story 14 7,947 8,132 7,879 8,182 Story 13 8,306 7,614 7,739 7,334 Story 12 8,467 9,269 9,087 9,473 Story 11 8,792 8,794 8,010 7,595 Story 10 8,590 9,399 9,576 8,696 Story 9 8,968 8,657 8,658 8,626 Story 8 10,026 10,312 10,310 10,265 Story 7 9,547 9,736 9,735 9,794 Story 6 7,401 7,284 6,473 6,834 Story 5 5,728 5,714 6,507 6,176 Story 4 5,399 5,577 5,760 5,322 Story 3 4,998 4,981 4,964 5,923 Story 2 5,672 5,635 5,604 5,548 Story 1 1,153 1,216 1,280 1,341 Basement 1 0,145 0,149 0,155 0,162 Basement 2 0,065 0,068 0,070 0,072 Basement 3 0,000 0,000 0,000 0,000

(Source: Author's analysis, 2022)

#### Tabel 8. Story Drift Arah Y

|            | Story Drift of Y Direction |             |             |             |
|------------|----------------------------|-------------|-------------|-------------|
| Story      | (mm)                       |             |             |             |
|            | Existing                   | Variation 1 | Variation 2 | Variation 3 |
| Roof Story | 7,633                      | 7,598       | 7,549       | 7,522       |
| ME Story   | 7,461                      | 7,417       | 7,363       | 7,331       |
| Story 28   | 7,580                      | 7,545       | 7,496       | 7,469       |
| Story 27   | 7,551                      | 7,518       | 7,472       | 7,447       |
| Story 26   | 6,300                      | 6,274       | 6,237       | 6,218       |
| Story 25   | 6,305                      | 6,281       | 6,247       | 6,230       |
| Story 24   | 6,270                      | 6,253       | 6,224       | 6,212       |
| Story 23   | 6,250                      | 6,236       | 6,211       | 6,202       |
| Story 22   | 6,216                      | 6,207       | 6,186       | 6,181       |
| Story 21   | 6,177                      | 6,173       | 6,156       | 6,155       |
| Story 20   | 6,129                      | 6,131       | 6,118       | 6,121       |
| Story 19   | 6,090                      | 6,095       | 6,087       | 6,093       |
| Story 18   | 6,022                      | 6,034       | 6,031       | 6,043       |
| Story 17   | 5,977                      | 5,992       | 5,993       | 6,008       |
| Story 16   | 5,632                      | 5,651       | 5,657       | 5,675       |
| Story 15   | 5,862                      | 5,887       | 5,896       | 5,918       |
| Story 14   | 5,801                      | 5,830       | 5,843       | 5,869       |
| Story 13   | 5,713                      | 5,746       | 5,763       | 5,792       |
| Story 12   | 5,625                      | 5,661       | 5,682       | 5,714       |
| Story 11   | 5,502                      | 5,540       | 5,563       | 5,596       |
| Story 10   | 5,288                      | 5,329       | 5,355       | 5,391       |
| Story 9    | 5,110                      | 5,154       | 5,184       | 5,223       |
| Story 8    | 5,970                      | 6,019       | 6,051       | 6,092       |
| Story 7    | 5,572                      | 5,621       | 5,655       | 5,698       |
| Story 6    | 4,085                      | 4,126       | 4,154       | 4,190       |
| Story 5    | 3,393                      | 3,431       | 3,458       | 3,492       |
| Story 4    | 3.128                      | 3.164       | 3.191       | 3.222       |



Attribution 4.0 International (CC BY 4.0)

Available Online @ http://jumal.narotama.ac.id/index.php/ijti ISSN : 2597-4769 (ONLINE) ISSN : 2597-4734 (CETAK) IJTI

| are free to: Share — copy and redistribute the | material in any medium or forr<br>Volume 4 N | nat, Adapt — remix, transform<br><b>umber 2 March 202</b> | n, and build upon the materia<br>1 | l for any purpose, even commercially |
|------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|------------------------------------|--------------------------------------|
| Story 3                                        | 2,858                                        | 2,884                                                     | 2,901                              | 2,923                                |
| Story 2                                        | 3,251                                        | 3,274                                                     | 3,288                              | 3,307                                |
| Story 1                                        | 2,143                                        | 2,167                                                     | 2,186                              | 2,208                                |
| Basement 1                                     | 0,944                                        | 0,953                                                     | 0,959                              | 0,967                                |
| Basement 2                                     | 0,314                                        | 0,319                                                     | 0,322                              | 0,326                                |
| Basement 3                                     | 0,000                                        | 0,000                                                     | 0,000                              | 0,000                                |
|                                                |                                              |                                                           |                                    |                                      |

(Source: Author's analysis, 2022)

# 4. Conclussion

Based on the results of modeling analysis with variations in column dimensions in buildings that have vertical geometric irregularities, it can be concluded that variations in column dimensions in the behavior of building structures with vertical geometric irregularities will affect building behavior against earthquakes, namely reducing building stiffness. The decrease in building stiffness is seen from the parameter results, increasing the fundamental structure, reducing the base shear, and increasing the displacement.

The difference in the behavior of the irregular structure of the vertical geometry which has varied the dimensions of the column shows that the reduction in mass in the building will cause the stiffness of the building to be smaller. This is evidenced by the existing building as a variation that does not experience a reduction in column dimensions so that the mass of the building does not decrease and has a greater building rigidity when compared to other modeling variations. This is reviewed based on the parameters of base shear, fundamental period, displacement, and story drift.

The variation of the planned column dimension reduction is still within safe limits in accordance with the permitted displacement of SNI 1726 2019 in terms of displacement parameters and story drift.

The value of the base shear in each building model, namely, the existing model in the X direction is 4112.62 kN, while the Y direction is 5971.23 kN. Variation Model 1 in X direction is 4067.31 kN, while the Y direction is 5893.29 kN. Variation Model 2 in X direction is 4019.05 kN, while the Y direction is 5812.28 kN. Variation Model 3 in X direction is 3974.3 kN, while the Y direction is 5732.11 kN. The critical story displacement value is obtained in the Variation model 3 with a displacement value of 195.424 mm in the X direction. The largest story drift in the X direction is found in the structure model variation 3 with a story drift value of 10.312 mm and the Y direction in the existing structural model with a value of 7.580 mm.

#### References

- Badan Standardisasi Nasional (BSN). (2019). SNI 1726:2019 Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung. BSN. https://tekonsipil.sv.ugm.ac.id/wpcontent/uploads/sites/938/2020/01/SNI-1726-2019-Persyaratan-Beton-Struktural-Untuk-Bangunan-Gedung.pdf
- Indarto, H., A., H. T. C., & Putra, K. C. A. (2013). *Aplikasi SNI Gempa 1726:2012 for Dummies*. Bambang Dewasa File's. https://www.academia.edu/40767178/Aplikasi\_SNI\_Gempa\_1726\_
- Paulay, T., & Priestley, M. J. N. (1992). Seismic design of reinforced concrete and masonry buildings. Wiley. https://www.wiley.com/en-us/Seismic+Design+of+Reinforced+Concrete+and+Masonry+Buildings-p-9780471549154
- Purba, H. L. (2014). Analisis Kinerja Struktur pada Bangunan Bertingkat Beraturan dan Ketidak Beraturan Horizontal sesuai SNI 03-1726-2012. *Jurnal Teknik Sipil Dan Lingkungan*, 2(4), 710–717. https://media.neliti.com/media/publications/212167-analisis-kinerja-struktur-pada-bangunan.pdf