Exploration of the Evolution of SISGANIS: Analytical Intelligence Approach in Raw Material Inventory Management and Interactive Visual Analysis Cafe Rengganis

  • Ferry Wiranto Institut Teknologi dan Sains Mandala
  • Muhamat Abdul Rohim
  • Lia Rachmawati
Keywords: Forecasting, Exponential Smoothing, Decomposition Methods, Interactive Visual Analysis, Raw Material Inventory

Abstract

SISGANIS (Rengganis Management Information System), developed in 2023 by the ITS Mandala Jember team and granted intellectual property rights (EC002023118017), focuses on automating raw material stock balances and financial reporting. Despite its active use by Cafe Rengganis in Jember Regency, it remains a Basic Information System, concentrating primarily on transaction data. Consequently, it lacks accurate real-time inventory forecasts and interactive visual analyses. The research is driven by Cafe Rengganis's need to enhance raw material inventory management efficiency. Frequent issues with determining appropriate stock levels lead to stockouts and inaccurate records. This necessitates exploring an advanced SISGANIS for more effective operations. The research utilizes Exponential Smoothing, Decomposition Methods, and Machine Learning (ML)-based data transformation to improve historical data processing, identifying complex patterns and trends in inventory management. Adopting an AGILE approach, the research team comprising IT experts, accountants, and students ensures rapid response and continuous iteration. The goal is to successfully implement the new SISGANIS version, enhancing inventory management efficiency, predicting raw material needs, and providing interactive data visualization tools, ultimately optimizing Cafe Rengganis's operational performance and customer experience

Downloads

Download data is not yet available.

References

-Adlam, B., Hoffman, M. D., Houlsby, N., Mclean, C., & Veitch, V. (2020). Underspecification Presents Challenges for Credibility in. … of Machine Learning …, 23, 1–61.

Adriel Silaen, T., & Iskandar, Y. A. (2023). Inventory Management with Demand Forecast for Eyeglass Lenses Using The Time Series Method at An Optical Store. Journal of Emerging Supply Chain, Clean Energy, and Process Engineering, 2(2), 85–97. https://doi.org/10.57102/jescee.v2i2.65

Apriliyani, Nining, et al. "Implementasi Metode Agile dalam Pengembangan Aplikasi Pengenalan Budaya Berbasis Web." Jurnal Ilmu Komputer dan Bisnis, vol. 13, no. 1, 2022, pp. 8-21.

Dudek, G., & Smyl, S. (2022). A Hybrid Residual Dilated LSTM and Exponential Smoothing Model for Midterm Electric. 33(7), 2879–2891. https://doi.org/10.1109/TNNLS.2020.3046629

Fachrurrazi, S. (2023). Peramalan Penjualan Obat Menggunakan Metode Single Exponential Smoothing Pada Toko Obat Bintang Geurugok. Techsi, 6(1), 19–30.

Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geoscientific Model Development, 15(14), 5481–5487. https://doi.org/10.5194/gmd-15-5481-2022

Jiang, W., Wu, X., Gong, Y., Yu, W., & Zhong, X. (2020). Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption. Energy, 193, 116779. https://doi.org/10.1016/J.ENERGY.2019.116779

Kavya B, Deetchika R, Radhamani V, & Manju D. (2022). Food Inventory Demand Forecasting Tool.

Li, D., Jiang, F., Chen, M., & Qian, T. (2022). Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks. Energy, 238, 121981. https://doi.org/10.1016/J.ENERGY.2021.121981

Li, J., Cui, T., Yang, K., Yuan, R., He, L., & Li, M. (2021). Demand forecasting of e-commerce enterprises based on horizontal federated learning from the perspective of sustainable development. Sustainability (Switzerland), 13(23). https://doi.org/10.3390/su132313050

Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: A survey. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2194). https://doi.org/10.1098/rsta.2020.0209

Mahajan, S., Chen, L. J., & Tsai, T. C. (2018). Short-term PM2.5 forecasting using exponential smoothing method: A comparative analysis. Sensors (Switzerland), 18(10), 1–15. https://doi.org/10.3390/s18103223

Maricar, M. A. (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. Jurnal Sistem Dan Informatika, 13(2), 36–45.

MD ROKIOBUL HASAN. (2024). Addressing Seasonality and Trend Detection in Predictive Sales Forecasting: A Machine Learning Perspective. Journal of Business and Management Studies, 6(2), 100–109. https://doi.org/10.32996/jbms.2024.6.2.10

Patro, S. G. K., & sahu, K. K. (2015). Normalization: A Preprocessing Stage. Iarjset, 20–22. https://doi.org/10.17148/iarjset.2015.2305

Peng, Z. J., Zhang, C., & Tian, Y. X. (2023). Crude Oil Price Time Series Forecasting: A Novel Approach Based on Variational Mode Decomposition, Time-Series Imaging, and Deep Learning. IEEE Access, 11(August), 82216–82231. https://doi.org/10.1109/ACCESS.2023.3301576

Peterson, R. A. (2021). Finding Optimal Normalizing Transformations via bestNormalize. R Journal, 13(1), 310–329. https://doi.org/10.32614/rj-2021-041

Rachman, R. (2018). Penerapan Metode Moving Average Dan Exponential Smoothing Pada Peramalan Produksi Industri Garment. Jurnal Informatika, 5(2), 211–220. https://doi.org/10.31311/ji.v5i2.3309

Rezai, A. F. (2024). DEGREE PROJECT Improving The Production Forecasts Developing a Forecasting Model Using Exponential Smoothing.

Rushton, R., Lorraine, O., Tiong, J., Karim, M., Dixon, R., Greenshields, W., Marotti, R., & Bretaña, N. A. (2023). Forecasting inventory for the state-wide pharmaceutical service of South Australia. Procedia Computer Science, 219(2022), 1257–1264. https://doi.org/10.1016/j.procs.2023.01.409

Soeseno, J. H., González, S., & Chen, T. P.-C. (2023). Streamlined Framework for Agile Forecasting Model Development towards Efficient Inventory Management.

Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157–169. https://doi.org/10.1016/J.JMSY.2018.01.006

Published
2024-12-07
How to Cite
WirantoF., RohimM., & RachmawatiL. (2024). Exploration of the Evolution of SISGANIS: Analytical Intelligence Approach in Raw Material Inventory Management and Interactive Visual Analysis Cafe Rengganis. JEEIT nternational ournal of lectrical ngineering and nformation echnology, 7(2), 88 - 102. https://doi.org/10.29138/ijeeit.v7i2.2918
Abstract viewed = 0 times
PDF downloaded = 0 times