Analysis of Peak Flood Discharge in Small-Scale River Flow Area

(Case Study in the Akelaka Watershed)

  • Idhar Sahdar Tarumanegara University Jakarta
  • Dede Rohmat Civil Engineering, Universitas Pendidikan Indonesia, Indonesia
  • Wati A. Pranoto Civil Engineering Doctoral Program, Universitas Tarumanagara Jakarta
Keywords: Akelaka, Flood Discharge, Small Watershed, Synthetic Unit Hydrograph

Abstract

Purpose: Flood discharge is a critical component in reducing the impact of flooding in a given location. An analytical technique based on a watershed's morphometric properties is a method for those without a gauge, particularly in small-scale watersheds.

Design/methodology/approach: The synthetic unit hydrograph (HSS) approach is used in this study to analyze flood output. This study was conducted in the Akelaka watershed, a sub-watershed of Tayawi. This analysis relies on spatial and attributes data. A spatial study of watershed morphometric properties was obtained by integrating digital elevation model (DEM) data into geographic information system-based applications (GIS). Meanwhile, using rainfall data from 2019 to 2021, a statistical approach is used to calculate the design rainfall intensity, which is then used as an input variable in the HSS analysis.

Findings: The findings of hydrographic analysis using Nakayasu HSS demonstrate that the peak flood time (Tp) is 2.8 hours with a maximum flood discharge (Qp) of 56.636 m3/s, 76, 987 m3/s, 88,091 m3/s, and 101,279 m3/s for return periods of two years, five years, ten years, and 25 years.

Paper type: Research paper

Downloads

Download data is not yet available.

References

Asdak, C. (2002). Hidrologi dan Pengelolaan Daerah Aliran Sungai.

Karale, R. ., Bali, Y. ., & Narula, K. . (1977). Priority watersheds for soil conservation works in Matatilla catchment [India]. Journal of the Indian Society of Remote Sensing, 25(3). https://www.indianjournals.com/ijor.aspx?target=ijor:jisss&volume=25&issue=3&article=018

Loebis, J. (1993). Hidrologi Sungai. Departemen PU.

Mays, L. W. (2001). Stormwater Collection Systems Design Handbook (1st ed.). The McGraw-Hill Companies, Inc.

Rejekiningrum, P. (2014). Impact of Climate Change on Water Resources: Identification, Simulation, and Action Plan. Jurnal Sumberdaya Lahan, 8(1), 1–15. https://media.neliti.com/media/publications/133532-ID-dampak-perubahan-iklim-terhadap-sumberda.pdf

Safarina, A. B., Salim, H. T., Hadihardaja, I. K., & Syahril, M. (2011). Clusterization of Synthetic Unit Hydrograph Methods Based on Watershed Characteristics. International Journal of Civil & Environmental Engineering IJCEE-IJENS, 11(6). https://www.semanticscholar.org/paper/Clusterization-of-Synthetic-Unit-Hydrograph-Methods-Safarina-Salim/2f9180e13b080a607f8d1ebf9be3900b81298d1f

Sarminingsih, A. (2018). Pemilihan Metode Analisis Debit Banjir Rancangan Embung Coyo Kabupaten Grobogan. Jurnal Presipitasi : Media Komunikasi Dan Pengembangan Teknik Lingkungan, 15(1), 53. https://doi.org/10.14710/presipitasi.v15i1.53-61

Seyhan, E. (1990). Dasar-Dasar Hidrologi (S. Prawirohatmodjo & S. Subagyo (eds.)). Gadjah Mada University Press.

Suripin. (2004). Sistem Drainase Perkotaan yang Berkelanjutan (1st ed.). Andi Offset.

Triatmodjo, B. (2008). Hidrologi Terapan (Cet. 1). Beta Offset.

V.V., D. N. (1993). Soil and water conservation research in India. Indian Council of Agricultural Research.

Published
2023-03-31
Section
Articles