Implementation Of Natural Language Processing for Spam Email Detection in Outcome Based Education (OBE) Application
Main Article Content
Abstract
The Natural Language Processing (NLP) approach has been proven to be effective in spam detection in e-mail because of its ability to process text and identify patterns and distinctive characteristics of spam e-mail. Methods in this NLP approach include data pre-processing, such as removing punctuation, irrelevant common words, tokenization, stemming, and others, as well as classification techniques such as Support Vector Classifier (SVC), Naive Bayes, and others. In testing various models, there is one model that shows the highest precision with the number 0.98. This study shows that the NLP approach provides better performance in spam detection compared to other methods. However, it is necessary to improve technology and develop more complex detection methods to improve the performance and accuracy of the email spam detection model
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
F. Z. Ruskanda, “Study on the Effect of Preprocessing Methods for Spam Email Detection,” Indones. J. Comput., vol. 4, no. 1, p. 109, 2019, doi: 10.21108/indojc.2019.4.1.284.
E. P. Laksono and A. Wicaksono, “Penyaringan Spam email menggunakan,” vol. 5, no. 2, pp. 26–32.
F. Rahma, A. Z. Farmadiansyah, and A. F. Hidayatullah, “Deteksi Surel Spam dan Non Spam Bahasa Indonesia Menggunakan Metode Naïve Bayes,” Automata, vol. 2, no. 2, 2021.
R. S. Lutfiyani and N. Retnowati, “Implementasi Pendeteksian Spam Email Menggunakan Metode Text Mining Dengan Algoritma Naïve Bayes Dan Decision Tree J48,” J. Komput. dan Inform., vol. 9, no. 2, pp. 244–252, 2021, doi: 10.35508/jicon.v9i2.5304.
S. K. Arts and S. K. Arts, “Performance Evaluation of Machine Learning Algorithms for Email Spam Detection,” pp. 1–4, 2020.
I. AbdulNabi and Q. Yaseen, “Spam email detection using deep learning techniques,” Procedia Comput. Sci., vol. 184, no. 2019, pp. 853–858, 2021, doi: 10.1016/j.procs.2021.03.107.
nitisha bharathi, “Email Spam Dataset,” kaggle, 2020. https://www.kaggle.com/datasets/nitishabharathi/email-spam-dataset.
N. Q. Fitriyah, H. Oktavianto, and H. Hasbullah, “Deteksi Spam Pada Email Berbasis Fitur Konten Menggunakan Naïve Bayes,” JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 5, no. 1, pp. 1–7, 2020, doi: 10.32528/justindo.v5i1.3414.
S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” J. Media Inform. Budidarma, vol. 5, no. 2, p. 406, 2021, doi: 10.30865/mib.v5i2.2835.
M. A. Ghani and H. Sulaiman, “Deteksi Spam Email dengan Metode Naive Bayes dan Particle Swarm Optimization (PSO),” Infotek J. Inform. dan Teknol., vol. 6, no. 1, pp. 11–20, 2023, doi: 10.29408/jit.v6i1.7049