Cluster Analysis of Online Shop Product Reviews Using K-Means Clustering
Main Article Content
Abstract
Purpose:This research aims to mine review data on one of the e-commerce sites which ultimately produces clusters using the K-Means Clustering algorithm that can help potential customers to make a decision before deciding to buy a product or service.
Design/methodology/approach: By using Octoparse we mine opinion or comment data in the form of customer online reviews, after getting the data we group the data using the k-emans clustering methode to obtain cluster
Findings: Cluster Analysys can can help potential customers to make a decision before deciding to buy a product or service
Research limitations/implications: WWW.Lazada.Com
Practical implications: State your implication here.
Originality/value:
Paper type: This paper can be categorized as case study paper
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Sidharta, S. & Suzanto, B. (2015). Pengaruh kepuasan transaksi online shopping dan kepercayaan konsumen terhadap sikap serta perilaku konsumen pada e-commerce. Jurnal computech & Bisnis. 9(1) : 23-36
Vercilles, Carlo. 2009. Business Intelligence: Data Mining and Optimazation for Decision Making. United Kingdom: Joh Wiley & Sons Ltd.
Han, J., Kamber, M. (2012). Data Mining: Concepts and Techniques (4th ed.). San Francisco: Morgan Kaufmann Publishers. Hossain, J., Sani, N. F. M., Mustapha The example of references using the IEEE style can be seen as follows:
Ganjisaffar, Y. (2013). Crawler4j v. 3.5. URL http://code.google.com/p/crawler4j/.[dikutip 2017-05-13].
Kumar, L., & Bhatia, P. K. (2013). Text Mining: Concepts, Process and Applications. Journal of Global Research in Computer Science, 4(3), 36-39.
Mardiana, T., Adji, T. B., & Hidayah, I. (2016). Stemming Influence on Similarity Detection of Abstract Written in Indonesia. TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(1), 219-227
Tala, F.Z., 2003. A Study of stemming effects on information retrieval in Bahasa Indonesia. Inst. Log.Lang. Comput.Univ.Van Amst. Neth.
Adriani, M., ASIAN, J., NAZIEF, B., TAHAGHOGHI, S.M., WILLIAMS, H.E., 2007.Stemming Indonesia: A confix-stripping approach.ACM Trans Asian Lang. Inf.Process. TALIP 6, 1-33.